

## MICROSTRUCTURE AND MECHANICAL CHARACTERISTICS OF TITANIUM ALLOY TC21 AFTER HEAT TREATMENT

M. Abdelhameed<sup>1</sup>, Ramadan N. Elshaer<sup>2</sup>, Khaled M. Ibrahim<sup>3</sup>, A. Sobh<sup>4</sup>, M. El-Shennawy<sup>5</sup>

<sup>1</sup>Research Scholar, Petrojet Co., Cairo, Egypt <sup>2</sup>Research Scholar, Tabbin Institute for Metallurgical Studies, Cairo, Egypt <sup>3</sup>Research Scholar, Central Metallurgical R&D Institute, Cairo, Egypt <sup>4</sup>Research Scholar, Faculty of Engineering, Helwan University, Cairo, Egypt

## **ABSTRACT**

Effect of heat treatment on microstructure and mechanical properties of TC21 titanium alloy was investigated. TC21 in annealed condition with an equiaxed  $\alpha+\beta$  structure was solution treated at temperature below  $\beta$ -transus (920 °C, 15 min) and temperature above  $\beta$ -transus (1020 °C, 15min, WQ). Aging was applied for both groups of samples (600 °C, 4h, AC).Treated samples below  $\beta$ -transus showed an equiaxed  $\alpha+\beta$  structure. Samples treated above  $\beta$ -transus have been changed to a solely  $\beta$ -phase with little amount of secondary  $\alpha$ -phase precipitated in the formed  $\beta$ -phase due to high cooling rate and aging process. Maximum hardness of 492HV<sub>30</sub> was reported for samples treated at 1020 °C due to precipitation of secondary lamellar alpha phase and small lathes of martensitic phase ( $\alpha$ \\) in  $\beta$ -matrix. Maximum tensile strength of 1447MPa and ductility of 8% were reported for the samples treated at920 °C due to its structure that contained  $\alpha$ ,  $\beta$  and  $\alpha_s$ . Hence, treated samples at 920 °C showed the best mechanical properties and the most reliable and repeatable characteristics.

KEYWORDS: TC21 Titanium Alloy; Heat Treatment; Microstructure; Mechanical Properties

Article History

Received: 21 Apr 2021 | Revised: 27 Apr 2021 | Accepted: 11 May 2021